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suMMARY

of designing circular blade systems of finite spacing is

-.

First, the theory of a flow through a system of infinitesimally
spaced surfaces is formulated by means of a continuous axially symmetric
force field which is uniform in the circumferential direction. This
force field replaces the effect of the blade system, with its hub and
shroud boundary surfaces.

b Second, the force field in the space between the blades, the hub,
and the shroud is replaced in the equations of finite spacing by those
inertia and pressure terms which were Odtted in the equatiom of.

. infinitesimal spacing. These terms will change the values of the flow
variables of infinitesimal spacing.

In order to determine these changes, a series de~eloment iS used
for the velocity components and pressure functions in powers of a param-
eter function $. The series development in powers of $ leads to
equations of first, second, and higher orders for the determination of
increments which correct the velocity and pressure functions. In this
report only the equations of first and second order are derived explic-
itly. The solution of first order shows the important result that, at
the entrance and the exit of the compressor stage, the force vector used
for the infinitesimal spacing or, what is equivalent, the increments of
odd order must be zero at entrance and exit.

—
This is necessary in order

to prevent discontinuity ofpressure and velocity at inflow and outflow.
This conclusion is taken into account in a detailed determination of the
flow variables of infinitesimal spacing. In this way it is insured that
In finite spacing no discontinuity appears, neither for the pressures
nor for the velocities except across the blade surfaces.

— -—.—
—
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INTRODUCTION

The following steys are covered in the j~esent paper in the develop-
ment of a method of designing circular blade systems of finite spacing.
First, the theory of a flow through a system of infinitesimally spaced
surfaces is formulated by means of a continuous axially symmetric force
field which is uniform in the circumferential direction. It replaces
the effect of the blade, hub, and shroud boundary surfaces. Second, the
force field in the space between the blades, the hub, and the shroud is
replaced in the equations of finite spacing by those inertia and pressure
terms which were omitted in the equations of infinitesimal spacing.
These terms will change the values of the flow variables of infinitesimal
spacing.

In order to determine these changes, a &eries development is used
for the velocity components and pressure functions in powers of a param-
eter function *. This function is in a certain way connected with the
angular distances between a system of streamlines (called “frozen” or
“fixed”) and the system of streamlines of-finite spacing. The frozen
streamlines, arranged at the desired spacing angle, are taken from the
field of infinitesimal spacing and are shown not to change their
form. The series development in powers of V leads to equations of
first, second, and higher orders for the determination of increments
which correct the velocity and pressure functions. In this report only
the equations of first and second order are derived explicitly, though
a higher development-doesnot yresent any difficulties. The solutions
of equations of first and second orde~are given.

In the equations of first order, which determine the increments of
the flow variables of first order, the force-field and the flow variables
of infinitesimal spacing and derivatives of the parfieter function $
appear. A triple redundancy of variables in these equations makes it
necessary and of advantage to make appropriate assumptions for three
redundant variables, in this case for the derivatives of $. These
derivatives of ~ are valid for the equations of all orders. In this
report they have only been applied for the equations of first and second
order. However, only from the equations of first order the blade and
streamline surfaces and also the pressure and velocity distributions of
finite spacing are determined in this report.

The method of this determination applies the differential equations
for the deformation in the angular and in then-radialdirection; Of the
three functions &p, th, and $, one is redundant; &p is preferred
as the redundant function in the form of a polynomial, which serves by
means of its coefficients to obtain an approprlaWairfoil shape and the

.-

-.

.
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parameter function *. After this function ~ is determined, the

(
increments of any order e.g., ~n~n) of the flow variables can be calcu-

lated explicitly.

The solution of first order shows the important result that, at the
entrance and the exit of the compressor stage, the force vector used for
the infinitesimal spacing, that is, the increments (u1 and so forth) of
odd order, must be zero at entrance and exit. This is necessary in order
to prevent discontinuity of pressure and velocity at inflow and outflow.
The last part of this paper takes this conclusion into account in a
detailed determination of the flow variables of infinitesimal spacing.

. In this way it is insured that in finite spacing no discontinuity
appears, neither for the pressures nor for the velocities.

In the example, the circumferential velocity appears as a potential
circulation, the power distribution becomes uniform, and the yressure
distribution satisfies a prescribed average compression ratio and appears
as gradually increasing with the radius. - -

This work was done at the Polytechnic Institute
the sponsorship and with the financial assistance of

a Committee for Aeronautics.

& SYMBOLS

r) T> z cylindrical coordinates

——

of Brooklyn under
the National Advisory

u, v, w velocity components in r, q, and z directions,
respectively

P pressure
.

P density

P
(f)

dp
enthalpy (pressure-density function) ~

kr> kq~ kz tipressed force intensity per unit of mass in r, q, and z
directions, respectively; used for infinitesimal spacing

Y ratio of specific heats

+ angle indicating angular distance from a streamline surface
of infinitesimal spacing
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I

?s r/re

c ~ z/1

a. spach.g angle

Subscripts:

o flow functions in a blade system of infinitesimal spacing

1,2, 3,... orders of development in powers of v

in -- (entrance) intake position at leading edges of blades

ex (exit) outflow

i hub radii

e shroud radii

———

—
—

position at trailtig edges of blades
-.

—

.GENERAL ANALYSIS

Infinitesimal Spacing

A detailed account of the analysis for .infinitesimalspacing is given
in references 1 and 2. An outline of this previous work is repeated here
since it is necessary for the further extension to finite spacing.

It is shown in reference 1 that the action of a blade system with
ils hub and shroud (which rotates with constant speed) can be expressed
for the case of infinitesimal-spacingby a force field of axial symmetry
and circumferential uniformity. This force field is denoted by

The further assumption of nonviscous and isentropic flow makes it
convenient to introduce the.enthalpy function P, which replaces the

two variables p’ “and p and simplifies the analysis, Eased on the
relation

.

-.

-.

P/Pin = (/ )P Pin
Y

.

.
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)

the enthalpy function P = alp/p tecomes

d
w,

P Y=— P/P
Y-1

Eliminating p, one obtains

where

y pinPin=y —
- 1 Pin

The subscript ( )in denotes values at the intake station.a

The dynamic (Euler) equations of flow are referred to a cylindrical
& coordinate system (r, cp,z) rotating with the constant velocity u in

which the corresponding velocity components are u, v, and w.

The system of equations goyerning an axially symmetric, circum-
ferentially uniform motion, characterized by the subscript o, is given
by (see reference 1)

(a) The dynamic equations

au
.-Q+WO

% &

auo V02—-— -
az r ‘2r

avo* w avo+ Vouo
U. —

& ‘T r

apo
-2VOLD +-=

&
% (la)

+ 2UO(D= k
9

Uo

awo b. ‘apo
K-+wox-+s-=kz

(lb) .

(lC)
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(b) The.conditionof nonviscous flow

kr~ + k@. + kzwo = O

NACATN 2493

t

(la)

(c) The continuity equation

“-’)p+*’a+%*+”O*=O“e)
All derivatives with respect to q are omitted, because circumferentlally
uniform symnetry is required.

,

(d) The Bernoulli energy integral. If the dynamic equations
(equations (la), (lb), and (lc)) are multiplied by u, V, and W,
respectively, added, and the condition (id) of nonv+.scousflow is
observed, the energy equation along any streamline is obtained; namely,

where

q2=#’+v2+w2

(if)

(u)

The five equations (equations (la) to (if)) contain seven unknown
variables (u, v, W, P, kr, ~, and kz). Therefore two variables
are prescribable. The prescription ofithe enthalpy fynction P and
one of the velocity component~ u or w seems most appropriate to
solve the continuity equation (le). The procedure is shown in refer-
ences 1 and 2 and also in the example discussed in a later section of
this report.

—
*–

Transit-ionto Finite Spacing

The flow through a bkde system of finite spacing, in contradistinc-
tion to the case of infinitesimal spacing, is not uniformly symmetric In
the circumferential direction. Because of this fact, the dynamic equa-
tions and the continuity equatton must be complemented by the alaq
terme and freed from the force-field components (kr) ~, and kz).

.

.
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The complemented equations must be written in the following form:

The dynamic equations

~g+ap.o
dz az

The continuity equation

where

(2a)

(2b)

(2C)

(2d)

and

~+ av *=div (-J
r & r% + az

The physical interpretation of transition to finite spacing, by
giving up the uniform axial Swetv, may be stated as follows: The
streamlines calculated for infinitesimal spacing are no”longer & dynamic ‘-
equilibrium, if the original force field is abandoned and the circumfer-
ential (@p) inertia forces are added. However, one set of streamlines,
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#

of a number given by the required number of blades, can be shown to
remain in dynamic equilibrium. All other streamlines will be shifted

.

and defofied by the removal of the original force field and the addition

—
.—

of the circumferential inertia forces and pressure gradients; this means —

that the flow variables u, v, W, and P will be changed, the change
-,

evidently increasing with the distance from..theunchanged streamline.

The Values of these changed variables tiybe written in the form ,=

U=uo+u 1

v = V. +V

w =Wo+w

P .PO+II -

(3)

where, in the analysis to follow, the values of U, Vj W, and II

are assumed to be so small that powers and products of these funct-ions
higher than the first.and their deri~tives can be neglected”l ~is
assumption must of.course be justified by ttieorder of%agnitude of

--—

the results.
s:

If, with these assumptions, equations (la) to (le) and (2a) to (2d)
corresponding to one another are subtracted the resulting system of “-

F.

equations appears in the following form:

(4a)

1
In principle this

development in terms of
duced below; it is used

assumption is not
the powers of the
here only for the

necessary for the method of
spacing parameter $ intro-

—
—

sake of simplicity. .—

.

●
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A

(4d)

b these equations the force components kr} , Ud kz and all
Yother terms with the subscript o must be considere as already deter-

mined from the analysis and computation of the system of infinitesimal
spacing●

The next step of the analysis is the choice of an individual stream-
line of the stream field of infinitesimal spacing lying fixed in the
stream field of finite spacing. On this “frozen” streamline the require-
ment will be enforced that all dependent variables (velocities and
pressures) will be equal to those in the system of infinitesimal spacing,
which means that this streamline will be in a dynamic equilibrium. As
soon as one moves away from this streamline, the changes U, V, W,
and II and also changes of the variables r, Z, and q will arise
for the generation of dynamic equilibrium.

This change of variables may nowbe expressed by ~ as an angular
parameter appearing in the following formulas:

V = ~ vn(rjz)$n
n=l

. = ~ wn(r,iz)F
n=l

(5)
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If the variables of iufinites@al spac~qgiare taken into account} the
i

formulas above change to
.. —., .,,”.. , ...+-.;.:. ,-. ..<. .-. ii .,. ;_n A- .n-

-------- . . . . .. .. . . . . .-. .

.

u= % +Vul(r)z) +-if2U2(rjz-J + . . .
1

—

v= V. + hl(rjz) + $%p(r,z) + . . .

w = W. + Vq(rjz) + $~p(r)z) + . . . 1’(5a)
.—

P= p. + $pl(r,z) + @P2(r,z) + . . ,

J

In the analysis to follow, only tlm-terms of first and second order
shall be developed.

In.order to express equations (b) to (&i) in terms of the series
development (~a), the derivatives of equations (h) to (kd) must be —

expressed as shown by the.followhg examples: ... . ---

(6)”

Derivatives o~the me showq above must now be inserted in eqw-
tions (4a) to (4d). If then the terms with the factor v“ = 1 (first
order) and also the terms with the factor .*l= ~ (second order) are
collected, two systems of equations are obtained. They must then be
used to determine the values of the variables U1)

-
vl) ‘1) and P1

and the values of the variables

.—

U2) .V2, ‘2J and ~. There appear

also the variables a~/?3r, av/a~,and aiyaz,which must also be
—

assumed or determined, as will be shown below.
.

.



Using the expres$i,~ns.o~~derivatitinas exaiupledabove, one obtains
the following”two sets of equations,&

The equations of first order of common factor $0 = 1 are as
follows:

The dyn@c ‘equations

(7a)
,“

. .

(’n)

(7C)

The energy (Bernoulli)
k#o +

%0. -
V + kzwo =’0

‘Pl,+:UOU1*,..
... .

,. ,. “:.>..
The coritinuity equatiou .- ..”. ., .

integral based on. ,?
.. . ..-. ,.,&;...::.......-.

,. , .-,.,,!.-. .. . . . . . . . . . . .

vov~ -+ wo”w~”’= () .“ . m. . .,.-.. .:

w (0$: P1 “+‘“(7.“-”I)po u y.+ ~1.av

)

aw. =.O
1 ar. (7e)— — + ‘1 a= ~“: : ‘:::r. aq

The equations of second order of common factor $= *areas
follows: ., ..’,..:7s.”,’... ...

The dynamic e@at ions

2P2 -W. ‘1
au.
r+ 2

vl

T (V. + O.Yr) +Wo dz

(9a)

lav= dvl ~vo avo
2P2 ~ ~

-Wo K - ‘l F-
wlK- 2 ; (V. + m) + ‘lvO - ‘Ovl -

r
.... ..........., L.., I,..”........., .“.-.”.~:..:”.,:..-.:.::. ..... :.‘H .. +V!:....:-.....*-.4..-.C ~..,.;:.r....,.i;; 7,-.-+
, @., .... ..:. , ~ , .-.. ...>,(p~,~ - -

2V2W0 ~ ;-...,:-.-...e.-.<,.- -
“c”(8b)

-. —
---
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The Colltintlityequation

VJUWBLES FOR FINITE SPACING

The Parameter Function *

(8d)

h simple method of successive solutions for the flaw variables of
successive cmkrs cm be developed by an appropriate choice of the”
partzlal.derivatives of the parameter *. The choice uf * is arbitrary
(within certain limits], because the four equations (equatians (7=)
to (1’~})CG~ seven variables (namely, Ul, W~, p~~ a’!lar~ ~$&~
and&@z). The fff%h equation (equation (7d)) is %tlsfied identically
as seen below.

The following assumptions far the redundant functions prove to
be apprapri=te for the blade desfgn:

(9)

For a single streamline Vti and rti’,are constant parameters, but for

a field of!streamlines they are functions of q and r, respectively.

.
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and

such
line
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The tdal,derivative of $ thembecomes

The f%nctlmt t’ above will be for?mzkted In the next section
as to be adapted to the design of the blade profKLe and the stream-
between the blades.

—

Variables of First Order

-se va-kzes} imerteti h the eYLergyintegral (7d), as mentfoneilabove,
satis~ ft identically.

The continuity ecp3tfcm (Te) furnishes the relations for PI;
namely,
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which, combined with the relation for: WI given by equation (1OC) yield

‘1=-
/

Pob:-l)h:” d~_
p~(7 - 1) - W02 ‘z

(l-la)

= kz
W.

W1

/

d~
(llb)

?.(7 -1) ;wo2, idz.. : . ,,
..}

.’.’

so that first-order terms are expressed by q~ntities known from the
equations of infinitesimal spacing.

*.1.:,..-

Egundary Conditions for.Fo~c.eField ofInfini’tesimal”Spacing —

To preyent flow discontinuities at entrance and exit, the values -
of the series terms of%dd powers in 2~, like iul$, *lY, and so
forth, must become zero~%trance andexit. By inspection o~the
results of first order given above, it is-seen readily that this condi-
tion is satified if the values of ~, ko, and kz of the force-field

intensity in the field of infinitesimal spacing are zero at intake and
exit. This requires anticipated restrictions in the integration of the
equat-ionsof infinitesimal spacing. These restrictions will be applied
in a following section.

Variables

Equations (8a).to ;(8d) show

up) (and P2 forV’2> W2) the

.—

.

—

.

of Second Or”der

Eeadily the,..=olutiom”for,the--variables”

‘&assumptions given a,boveof
S=o’

,. : . ...-..,.
namely,

(
dul auo ““au.:“:2vl a~lu2=&_.w ___ -

0 dz ‘1 & ‘1 K F ‘o~’bs” - r )
(12a)

Oz

(

dvl avo avo U1 Ulvo
v2= _&w _-lJlr.

0 dz ‘~z-
2 y-?. ~bs +

)
- ‘Ovl (12b)

Oz 9* r

.-

.
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.

.-

1 ( %..,.~o awo aP1
w2k —

— ‘“ ‘1 .~- - — - — - 2P2~z
2wo~z -Wo dz ‘laz az )’

(12c)

r
1

P2=—

{
2WOTZ ‘U1

(12d)

The solutions of the first- and second-order equations with the
choice d~/dz # O have the advantage that the first-order solutions
are independent of the second-order solutions.

STREAMLINIZSOF FINITE SPACING OF FIRST ORDER

In the method applied in this paper, the streamlines of finite
spacing are derived from a finitely s“~ced set of infinitestial (“ftied”
or “frozen”) streamlines. For this procedure one has to consider first
the derivation of a IiLade””profile between a pair of frozen streamlines
and secondly the derivation of free streamlines between one frozen
streamline of the pair and one side of the blade profile. This will be
done by introducing the tangent equations of the blade and the free
streamlines in tbe following qanner.

,.
Strealine Equations of Finite Spacing

The streamline equations of finite spacing are

dru U. + Ult

()

dro 1 +lnll/~
—=- =
dz w W. i-wl~ = c1 +*l/wo

(lsa:

(13b)
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If it is anticipated

(13d)

and, after the application OY the expressions (l@), (ha), and (llb)
of the variables of first order~

Isz

) (lsf)

%(7 - ~) -%2

The above two equations (equations (13e) and (Z3f)) alone control
the three functions of z (~, &p, and br). Hence one of these func-
tions can be prescribed and the others derived from it. It seems
a~pro}riate to prescribe bq = f(z), since 5v’-mainly determines the
airfoil shape (which is the primary objective).

Streamline Deformations & and &p

Equations (lSe) and (13f) may nowbe applied

‘(bT) the de~mtionof the prescri~tion for
dz ‘ .

tion of the parameter $.

to derive, by means

d(&)
.~ and the func-

●

✎✍

.

.

.,
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It is then advisable to introduce from eqpations (13e) and (13f)
the following abbreviations:

(14)

The terms ~ and
%

are known functions of z along the streamlines

of infinitesimal spacing. In the next section the flow variables of
infinitesimal spacing (kr, ~, kz, Uo, Vo, Wo, and Po) appearing

in the functions Hr and E@ predetermined such that the conditions

of prevention of discontinuities are satisfied at entrance and exit,

The elimination of the expression

.4 tions (lSe) and (13f) gives

.

Id (lO& ~)
+/+’ =1

dz
from equa-

The Integration of this equation leads to

where c =0 inorder to make &?=O at z=O,and

(15)

(15a)

(15b)
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Here Z1 is an arbitrary

the deformation function

NACA TN 2h93

r
function of z, determined by the choice of

@, which latter prescribes the airfoil pro-
file; Z.2 is a function given

spating.

The function

6q)=

where nf ~ %inal

that 50 and &

by the flow variables ofiinfinitesimal

assumed as a polynomial
—

n=n

)r%(re ‘rin anzn
n=l

and the coefficients ~

equal zero at entrance and
profile boundary has the shape of an airfoil.

the angular distance of the entrance point of

must be determined such

exit and also such that the
The factor ~ indicates

a blade streamline from the
next frozen streamline, ~ indicates the distance of am intermediate ‘--
free streamline, and ~ + a- = a, the spacing angle, (See figs. land 2.)

The purpose of the factor (re - rti) is to make the inside of the

casing, along which the blades rota~cylindrical. This iS shown by
equation (15a) which explicitly written is

F ““

Determination

The parameter function ~ can
(15a), and (16) as follows:

of Function $

be found by means of equations (13e),

/

d(br)
d (loge $)1~ = ~ ~ (17)

$=cle~~z~dzl~ (17a) _. .

.

where at the entrance point (z = O) it is seen that c1 = tin =-~
—

locates the leading-edge points of the blare profile. This definition is

.
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also true for the free streamline surfaces
surfaces and the blade surface. It may be

19

between one of the frozen
expressed in the following

.—

marine r: *=@i at z = O (since $ = c1 = @+ at z = O), where- P

is a constant varying from O to 1, that is, from the leading edge of a
frozen streamline to the leading edge of a free streamline surface
(O < B < 1) and to the leading edge of a blade surface for p = 1
(see fig. 1).

Conditions for Closing of

Fdges of Blade

Leading and Trailing

Profiles

The streamlines forming a blade profile must intersect at the leadimz
edge (z = O) and at the trailtig edge (z . 1). ‘I!hiscondition must -
be formulated by & = O and &p . 0 at Z = O and z . 1. me c~ndi.

tion is satisfied identically for z = O if in equation (15a) the inte-
gration constant c is made equal to zero; this is seen from equa-
tion (15a) (if c = O) and from equation (16). For the trailing
edge z = z, one has to require that

(’r)z=z=LzZ1 exp”(-Z2) dz = O

and

(m)Z=z ‘ @*(re - rin
) ‘~ (%zn) .0

n=l

(18a)

Both conditions mus’tbe satisfied by means of the coefficients ~
appearing in the power series of &p and in the function ~.

Special Case of a Blade Profile with One Side Coinciding with a

Streamline Surface of Infinitesimal Spacing

(18b)

The determination of the blade shape can be simplified by’pre-
scribing w = O on one side of one of a pair of the frozen streamlines;
for instance, ~- = O. It follows then from equations (13a) and (13b)
that 5r- and 5q)- are also zero for this streamline. With this
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—

prescription, this side of the blade profile retains the shape of the
streamline surface of infinitesimal spacing. The other side of the =

blade profile must-..thenbe approached from the other one of the pair of
frozen streamlines, which is located at the spacing angle distance a

--

from the first one of the pair (see fig. 2). This makes ~+ = a at

entrance and exit, so that &p+ and br+ give the other side of the
blade profile by means of equations (l~a), (16), and (l’i’a).The values :.—=

of y = pa,
—

where 13~–l or # O furnish the free streamlines between
the blades by means of equations (l~a) and (16).

FLOW VARIABLES OF IIU?INITESIMALSPACING WHICH SATISFY

CONTINUITY CONDITIONS OF FINITE SPACING

I!oundaryConditions and Available Assumptions for

of Equations of Infinitesimal Spacing

The bou@ary conditions
of equations (la) to (if) of
in items 1 to 7:

(1) The ratio of radial

(2) The axial velocity

(3) The absolute
that is,

and available assumptions
tifinit~simal spacing are

Solutions

for the solutians
given as follows

—

.—

—

--
●

and axial velocity

(/)U. W. <<1

‘o to be constant; that is,

‘o = w~ = Constant

circumferential velocity to be zero at the i.ntake;z

v
abs.,in =V

in ‘min=o

(4) The fact that-the enthalpy compression
stage differs very little from unity; that~sj

I ,Y”J ,

ratio m across one

m = Pex/P~ = (pex/pinj ‘ = ~ex,pi$028’

2A prerotation (vabs.,in # O) would not give any difficulty,

w

.-

.

.
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k’ so that one can write

. /‘o ‘in =l+C

i.rhere E< <l. (For example, if Po,ex/P~ = 1.2,

/
then Po,ex pin = 1.2°6286 = 1.052.)

(5) me function e is assumed in the form

e =R(T)Z(~)

with the length ratios

I

—

r—= F
‘e —

where

re
shroud radius (constant)

1, length of a single stage

The functions R(F) and Z(g) must be determined from the boundary
conditions given below.

(6) The radial velocity U. to be zero at intake and exit; that
is, U. .Oat~=Oand~=l; furthermore, in consideration of

the conditions that PI = O and in consequence ~ = O at C = O

duo
and at ~ = 1, it shall be required that

d~
=Oat{=Oand~=l. .

(7) AS a consequence of the restrictions on kr, ~, and kz

(see the dynamic equations of infinitesimal spacing (la)’to (if)), due to
the requirements in items (6) and (2), it is necessary to impose the
following boundary conditions for the enthalpy Po; namely,

aPo

‘a) r
=0 at K = O and 1.0, to satisfy kz = O at

(=Oandl
●

(b) ~ = O at ~= O, tosatisfykr=O at ~=0
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tomslse kr=O at ~=1

a%
(d) — at {=0 and~ = 1 (see equation (20a) and

b~2

item (5))

Finally, it is required that the average enthalpy rise be

(e) %verage ‘(po/pin).verage =m-at C=l (amoss the
exit section)

Variation of Radial Velocity

With the relations of items (l),
! = z/Z the continuity equation (le)

auoF
—= -2.5
F a~

With the separation of variables for
the equation above is

( 2), and (4) and the length ratio
becomes

‘e ac~ win —
M

G in.item (5) the integral of

(19)

In order to satisfy the condition that the shroud shall be cylindrical
(Uo,e = o, Fe = 1), the arbitrary function F must be

,..

where

/’
j?e.l

RT ti = Consta.nt---
Fi

.

—

——

—

.—=

—

.



23NACA TN 2k93

Equation,(19) is then changed to

[

1

‘e az
UOF = 2.5 ~ win —ag ~ ‘FdF

‘(20)

The requirement of item (6) that U. =’0 at ~ = O and ~ = 1 iS

()~obviously satisfied by the condition that = o. The second
a~ ~=o,g=l

duo
condition of item (6) that —=0 at,~= O and C = 1 is, as one

dg
sees by differentiation of equation (20),

a2z
z

=0 at ~ =0 and ~=1 (20a)

. Enthalpy (Pressure) Variation in Axial and Radial Directions

The boundary condition (c) of item (7) requires that the enthalpy
. apo

derivative —
a~

at ~=1

expressed by

‘in

Along any streamline,

umust be a function of”the velocity V.
@

(21)

the general expression for V. is given by

the Bernoulli energy integral (if).
in items (1) and (4), becomes

2=
Vo -26Pin

This equation, with-the conditions

22
+ (u-) re (22)

By partial differentiation of equation (22), from one streamline surface
to another, one obtains along the stage length and for this case at the

. exit cross section

.

a< avo— + .%re2‘in ~ = ‘Vo aF (22a)
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If Pin ~ is eliminated by means of equations (21) and (22a), the

following equation appears for v. at ~ = 1:

ho V.
-areF+?=

(23)

and the integral

to)!=,‘--(mre)~+/#
(23a)

or

(23b)

The significance of equation (23b) is the fact that-the circumferential
flow is a potential circulation.

The integration constant-–A must be positive since it indicates
the value of the absolute circumferential velocity and the moment of

.

— — .-
–*

—

—
—

—

—

momentum and also with it the torque and
It will be shown later that the required

value of the constant A.

The necessary values and conditions
determination of the enthalpy function.
is given in the form

the pawer of the compressor.
values of the-power controls the

.

are now available for the
In item (7) the enthalpy ratio

—
(24) :

r.
— .1 + R(F)Z(!)
P.am

J.LL

where it will be assumed that
—
.-

( )Z = a~ +b~2 + C’!.3+d!.4+e!5
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and where the requirements to be satisfied are

z =0 at ~=1

az
—=Oat~=Oandl
a?

If from these conditions
determined, the function

z

a2~

@?= Oat~=-Oandl

so that

the coefficients
Z “becomes

=
(

eC3 C2 - 2.5[ +

a~b, C, d, and e are.. ..

5/3)

}
P.
—=

(
1 +eR(Y)~3 g2 -

‘in
2.5! +5/3)

The function R(Y) will be determined
tion of equation (24a) with respect to ~,
found to be

(24a)

J

as follows. ‘Bydifferentia-
te enthalpy gradient

aPo
The conditian —=0 at ~= O 1s automatically satisfied.

z

The value of R(Y) in equation (24b) will now be determined

&o
cauiition (c) of item (7) for at~= 1; namely,

aPo

( )

2_-1
—= Vo + me? r
aF., . :

is
—

-...

(2hb)

from
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apo - r’

It is important to note here that —a~ at =1 isapo sitive gradient

because of the square on the right side (a fact necessary for the deter- s
minatiun of the integration constants which_appear below).

The vazue
namely,

Inserting

above and then

equation (24b)

of-.V. at ~ = 1 was given before by equation (23a);

-1
V. = *“re + AT (23a)

this value of V. into equation (c) of item (7) as given
apo

equating the relation resulting for — to that given byayo
(with ~ = 1), then

whence the value of R is

‘ineR = -3A%2 + Be

(24c)

(m

with the integration constant—-3, which will be expressed in terms of-
the con~tant ~, from the required average compression ratio.

The formula for P. (see equations (24) and (25)) can now be
written in the form

The formula developed for the radial velocity U. can now be
obtained after the functions R(r) and Z(c) are explicitly replaced
in equation (2o) by equations (24a) and (25). I&this is done, then
equation (20) becomes

= 12.5 ‘e --1

E
‘+~

(n

-1~2(1 - C)2 3A210~~ z 1-:2 ‘inU. ~ r win (27)

●
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Finally, it must be satisfied that at ~ = 1 the
ratio rise has the required value m*. This cmdition
by the
of the
(taken

where

27

average enthalpy
can be satisfied

available constants A axd Be of equation (26) by integration
enthalpy function across the annular cross section at ~ = 1
betieen the radii Fi and Ee = l), aS shown below.

ri
~i,ex =%

and where, from equation (26), for ~ = 1,

(28)

(26a)

.

After substitution of equation (26a) in equation (28) and integration
over the exit cross section, the following relation is found between
the constants Be and A:

(28a)

Replacing the constant Ee in equation (26) by the value in equa-
tion (p8a), one obtains the final form of the enthalpy ftmction; namely,
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.,
The Values of.Force-Field C~mponents :- ....,,.=.,-

The formulas for the blade shws expressed in equations (13a) u

and (13b) depend matnly m. the components kr, ~, and kz of the
.—

force field. These components are given by the dynamic equations of
flow equations (la), (lb), and (lc), after the conditions of items (1)

—

to (7) are taken into account in these equations. The values following
frorn”~heseconditions are given for u and its derivative by equa-
tions (27) and (28a), for 6 by eq~tion (26b),
Eernoulli equation (22). It follows then that

and for v by the

a<.-—

(30)

(id) ‘

..

Torque and Power Calcul.atim

of *he relations needed to calculate the
the comm?es.sor for infinitesimal sPaci.ngis given

The derivation
torque and power of
in reference 1. This deriv~tion may be repeated below in brief.

It is shown in reference 1 that the torque (or power) equation can
be obtained by the use of the Bernoulli energy equation in the form

where

w (L ‘ovo,abs.o dz ) = kqro

‘o,abs. = ‘o +ulr

(31)

--

.
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and

29

()dro u.
—=—
dz W.

Equation (31) represents the torque per unit of mass act”ingon a stream. “-
line element.

The mass of a volume element is given”by

Po(2nT & dz)
o

(32)

Hence the differential torque acting on an element is givdn by

w = Po(2m dr dz)kqjc (33)

or, by means of equation (31),

w=‘0”0(2mh ‘z)*P-J’S*) (33a)

Since the flow is steady, the mass flow though any cross section per
unit of time is constant. Hence equation (33a) becomes

dMo . (Constant) &(rvo,abs.) ‘z
d

( )
= 2~in ~~pinwin ~rvo,abs. dz

(33b)

so that the total torque ~ follows by integration from equation (33b);
namely,

J
‘in)e

J

Z=l
~ = 2flpinw~ d

‘in ‘i~ ( )=rvo~abs; ‘z (34)

‘in,i Z=o

.—
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m, explicitly,

M. = flPinwin
(‘i.n,e

2 - rti,i2
)( )‘Vo,abs. z=l (34a)

where in equation (34a) it is taken into account that v

as previously prescribed.
‘eva’uea’k%abs)at ~~’~:s~~z~’~’o’ .

is derived b~’”meansof equation (23b) ad is given in the--form —

Replacing V. abss, In equation (~ba) by its value given in
and introduci~ nondimensional radii ratios T = r~re and

into equation (34a)2 one obtains the following relation for

and power:

M. = ~inwinre ( )13 1 -Fin,i 2A

Power = ~~/550 hp
J

equation (23b)
Fin I

= rin re

torque ~

(34b)

It is observed from equation (34b) that the power is uniformly dis-
tributed across the exit section. Equation (3kb) also shows that the
torque, required to drive the compressor, depends upon three quantities,
namely,

(a) The entering mass flow flp
(

inwhre2 1 - rfn ~2
) )

(b) The shroud radius re (which is canstant)

(c) The absolute rotational velocity vo,ab~, ~=1 = v. + W ~=~
( ) ( )

at the exit station, dependent by equation (23b) on the
constant A = T(VO + U)g=l=

.

.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., June .2,1950

.

.
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Figure l.- General case.”
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Figure 2.- Special case.
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